Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Active Distance Metric Learning (1206.5283v1)

Published 20 Jun 2012 in cs.LG and stat.ML

Abstract: Distance metric learning is an important component for many tasks, such as statistical classification and content-based image retrieval. Existing approaches for learning distance metrics from pairwise constraints typically suffer from two major problems. First, most algorithms only offer point estimation of the distance metric and can therefore be unreliable when the number of training examples is small. Second, since these algorithms generally select their training examples at random, they can be inefficient if labeling effort is limited. This paper presents a Bayesian framework for distance metric learning that estimates a posterior distribution for the distance metric from labeled pairwise constraints. We describe an efficient algorithm based on the variational method for the proposed Bayesian approach. Furthermore, we apply the proposed Bayesian framework to active distance metric learning by selecting those unlabeled example pairs with the greatest uncertainty in relative distance. Experiments in classification demonstrate that the proposed framework achieves higher classification accuracy and identifies more informative training examples than the non-Bayesian approach and state-of-the-art distance metric learning algorithms.

Citations (73)

Summary

We haven't generated a summary for this paper yet.