Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A local limit theorem for random walks in balanced environments (1206.5182v2)

Published 22 Jun 2012 in math.PR, math-ph, math.AP, and math.MP

Abstract: Central limit theorems for random walks in quenched random environments have attracted plenty of attention in the past years. More recently still, finer local limit theorems -- yielding a Gaussian density multiplied by a highly oscillatory modulating factor -- for such models have been obtained. In the one-dimensional nearest-neighbor case with i.i.d. transition probabilities, local limits of uniformly elliptic ballistic walks are now well understood. We complete the picture by proving a similar result for the only recurrent case, namely the balanced one, in which such a walk is diffusive. The method of proof is, out of necessity, entirely different from the ballistic case.

Summary

We haven't generated a summary for this paper yet.