Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Variational Inference in the Conjugate Exponential Family (1206.5162v2)

Published 22 Jun 2012 in cs.LG and stat.ML

Abstract: We present a general method for deriving collapsed variational inference algo- rithms for probabilistic models in the conjugate exponential family. Our method unifies many existing approaches to collapsed variational inference. Our collapsed variational inference leads to a new lower bound on the marginal likelihood. We exploit the information geometry of the bound to derive much faster optimization methods based on conjugate gradients for these models. Our approach is very general and is easily applied to any model where the mean field update equations have been derived. Empirically we show significant speed-ups for probabilistic models optimized using our bound.

Citations (131)

Summary

We haven't generated a summary for this paper yet.