Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence Rates of Biased Stochastic Optimization for Learning Sparse Ising Models (1206.4627v1)

Published 18 Jun 2012 in cs.LG and stat.ML

Abstract: We study the convergence rate of stochastic optimization of exact (NP-hard) objectives, for which only biased estimates of the gradient are available. We motivate this problem in the context of learning the structure and parameters of Ising models. We first provide a convergence-rate analysis of deterministic errors for forward-backward splitting (FBS). We then extend our analysis to biased stochastic errors, by first characterizing a family of samplers and providing a high probability bound that allows understanding not only FBS, but also proximal gradient (PG) methods. We derive some interesting conclusions: FBS requires only a logarithmically increasing number of random samples in order to converge (although at a very low rate); the required number of random samples is the same for the deterministic and the biased stochastic setting for FBS and basic PG; accelerated PG is not guaranteed to converge in the biased stochastic setting.

Citations (9)

Summary

We haven't generated a summary for this paper yet.