Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
113 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Exact Soft Confidence-Weighted Learning (1206.4612v1)

Published 18 Jun 2012 in cs.LG

Abstract: In this paper, we propose a new Soft Confidence-Weighted (SCW) online learning scheme, which enables the conventional confidence-weighted learning method to handle non-separable cases. Unlike the previous confidence-weighted learning algorithms, the proposed soft confidence-weighted learning method enjoys all the four salient properties: (i) large margin training, (ii) confidence weighting, (iii) capability to handle non-separable data, and (iv) adaptive margin. Our experimental results show that the proposed SCW algorithms significantly outperform the original CW algorithm. When comparing with a variety of state-of-the-art algorithms (including AROW, NAROW and NHERD), we found that SCW generally achieves better or at least comparable predictive accuracy, but enjoys significant advantage of computational efficiency (i.e., smaller number of updates and lower time cost).

Citations (157)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.