Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Squeezing out the Cloud via Profit-Maximizing Resource Allocation Policies (1205.5871v3)

Published 26 May 2012 in cs.DC and cs.PF

Abstract: We study the problem of maximizing the average hourly profit earned by a Software-as-a-Service (SaaS) provider who runs a software service on behalf of a customer using servers rented from an Infrastructure-as-a-Service (IaaS) provider. The SaaS provider earns a fee per successful transaction and incurs costs proportional to the number of server-hours it uses. A number of resource allocation policies for this or similar problems have been proposed in previous work. However, to the best of our knowledge, these policies have not been comparatively evaluated in a cloud environment. This paper reports on an empirical evaluation of three policies using a replica of Wikipedia deployed on the Amazon EC2 cloud. Experimental results show that a policy based on a solution to an optimization problem derived from the SaaS provider's utility function outperforms well-known heuristics that have been proposed for similar problems. It is also shown that all three policies outperform a "reactive" allocation approach based on Amazon's auto-scaling feature.

Citations (16)

Summary

We haven't generated a summary for this paper yet.