Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two New Algorithms for Solving Covariance Graphical Lasso Based on Coordinate Descent and ECM (1205.4120v1)

Published 18 May 2012 in stat.CO and stat.ML

Abstract: Covariance graphical lasso applies a lasso penalty on the elements of the covariance matrix. This method is useful because it not only produces sparse estimation of covariance matrix but also discovers marginal independence structures by generating zeros in the covariance matrix. We propose and explore two new algorithms for solving the covariance graphical lasso problem. Our new algorithms are based on coordinate descent and ECM. We show that these two algorithms are more attractive than the only existing competing algorithm of Bien and Tibshirani (2011) in terms of simplicity, speed and stability. We also discuss convergence properties of our algorithms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.