Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
91 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
464 tokens/sec
Kimi K2 via Groq Premium
248 tokens/sec
2000 character limit reached

Stochastic and Variational Approach to the Lax-Friedrichs Scheme (1205.2167v1)

Published 10 May 2012 in math.NA and math.AP

Abstract: We present a stochastic and variational aspect of the Lax-Friedrichs scheme applied to hyperbolic scalar conservation laws. This is a finite difference version of Fleming's results ('69) that the vanishing viscosity method is characterized by stochastic processes and calculus of variations. We convert the difference equation into that of the Hamilton-Jacobi type and introduce corresponding calculus of variations with random walks. The stability of the scheme is obtained through the calculus of variations. The convergence of approximation is derived from the law of large numbers in hyperbolic scaling limit of random walks. The main advantages due to our approach are the following: Our framework is basically pointwise convergence, not $L1$ as usual, which yields uniform convergence except "small" neighborhoods of shocks; The convergence proof is verified for arbitrarily large time interval, which is hard to obtain in the case of flux functions of general types depending on both space and time; The approximation of characteristics curves is available as well as that of PDE-solutions, which is particularly important for applications of the Lax-Friedrichs scheme to the weak KAM theory.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube