Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Dynamic Programming By Minimizing Distributionally Robust Bounds (1205.1782v2)

Published 8 May 2012 in stat.ML and cs.LG

Abstract: Approximate dynamic programming is a popular method for solving large Markov decision processes. This paper describes a new class of approximate dynamic programming (ADP) methods- distributionally robust ADP-that address the curse of dimensionality by minimizing a pessimistic bound on the policy loss. This approach turns ADP into an optimization problem, for which we derive new mathematical program formulations and analyze its properties. DRADP improves on the theoretical guarantees of existing ADP methods-it guarantees convergence and L1 norm based error bounds. The empirical evaluation of DRADP shows that the theoretical guarantees translate well into good performance on benchmark problems.

Citations (14)

Summary

We haven't generated a summary for this paper yet.