Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Rounding by Sampling Approach to the Minimum Size k-Arc Connected Subgraph Problem (1205.1262v2)

Published 7 May 2012 in cs.DS and math.CO

Abstract: In the k-arc connected subgraph problem, we are given a directed graph G and an integer k and the goal is the find a subgraph of minimum cost such that there are at least k-arc disjoint paths between any pair of vertices. We give a simple (1 + 1/k)-approximation to the unweighted variant of the problem, where all arcs of G have the same cost. This improves on the 1 + 2/k approximation of Gabow et al. [GGTW09]. Similar to the 2-approximation algorithm for this problem [FJ81], our algorithm simply takes the union of a k in-arborescence and a k out-arborescence. The main difference is in the selection of the two arborescences. Here, inspired by the recent applications of the rounding by sampling method (see e.g. [AGM+ 10, MOS11, OSS11, AKS12]), we select the arborescences randomly by sampling from a distribution on unions of k arborescences that is defined based on an extreme point solution of the linear programming relaxation of the problem. In the analysis, we crucially utilize the sparsity property of the extreme point solution to upper-bound the size of the union of the sampled arborescences. To complement the algorithm, we also show that the integrality gap of the minimum cost strongly connected subgraph problem (i.e., when k = 1) is at least 3/2 - c, for any c > 0. Our integrality gap instance is inspired by the integrality gap example of the asymmetric traveling salesman problem [CGK06], hence providing further evidence of connections between the approximability of the two problems.

Citations (12)

Summary

We haven't generated a summary for this paper yet.