Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Where First-Order and Monadic Second-Order Logic Coincide (1204.6291v1)

Published 27 Apr 2012 in cs.LO and cs.CC

Abstract: We study on which classes of graphs first-order logic (FO) and monadic second-order logic (MSO) have the same expressive power. We show that for all classes C of graphs that are closed under taking subgraphs, FO and MSO have the same expressive power on C if, and only if, C has bounded tree depth. Tree depth is a graph invariant that measures the similarity of a graph to a star in a similar way that tree width measures the similarity of a graph to a tree. For classes just closed under taking induced subgraphs, we show an analogous result for guarded second-order logic (GSO), the variant of MSO that not only allows quantification over vertex sets but also over edge sets. A key tool in our proof is a Feferman-Vaught-type theorem that is constructive and still works for unbounded partitions.

Citations (34)

Summary

We haven't generated a summary for this paper yet.