Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning AMP Chain Graphs under Faithfulness (1204.5357v1)

Published 24 Apr 2012 in stat.ML, cs.AI, math.ST, and stat.TH

Abstract: This paper deals with chain graphs under the alternative Andersson-Madigan-Perlman (AMP) interpretation. In particular, we present a constraint based algorithm for learning an AMP chain graph a given probability distribution is faithful to. We also show that the extension of Meek's conjecture to AMP chain graphs does not hold, which compromises the development of efficient and correct score+search learning algorithms under assumptions weaker than faithfulness.

Citations (17)

Summary

We haven't generated a summary for this paper yet.