Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
40 tokens/sec
GPT-5 Medium
33 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
105 tokens/sec
DeepSeek R1 via Azure Premium
93 tokens/sec
GPT OSS 120B via Groq Premium
479 tokens/sec
Kimi K2 via Groq Premium
160 tokens/sec
2000 character limit reached

The Minkowski problem, new constant curvature surfaces in R^3, and some applications (1204.4687v3)

Published 20 Apr 2012 in math.DG

Abstract: Let $m\in\mathbb{N},$ $m\geq 2,$ and let ${p_j}{j=1}m$ be a finite subset of $\mathbb{S}2$ such that $0\in\mathbb{R}3$ lies in its positive convex hull. In this paper we make use of the classical Minkowski problem, to show the complete family of smooth convex bodies $K$ in $\mathbb{R}3$ whose boundary surface consists of an open surface $S$ with constant Gauss curvature (respectively, constant mean curvature) and $m$ planar compact discs $\bar{D_1},...,\bar{D_m},$ such that the Gauss map of $S$ is a homeomorphism onto $\mathbb{S}2-{p_j}{j=1}m$ and $D_j\bot p_j,$ for all $j.$ We derive applications to the generalized Minkowski problem, existence of harmonic diffeomorphisms between domains of $\mathbb{S}2,$ existence of capillary surfaces in $\mathbb{R}3,$ and a Hessian equation of Monge-Ampere type.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.