Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A regularity lemma and twins in words (1204.2180v1)

Published 10 Apr 2012 in math.CO, cs.DM, and q-bio.QM

Abstract: For a word $S$, let $f(S)$ be the largest integer $m$ such that there are two disjoints identical (scattered) subwords of length $m$. Let $f(n, \Sigma) = \min {f(S): S \text{is of length} n, \text{over alphabet} \Sigma }$. Here, it is shown that [2f(n, {0,1}) = n-o(n)] using the regularity lemma for words. I.e., any binary word of length $n$ can be split into two identical subwords (referred to as twins) and, perhaps, a remaining subword of length $o(n)$. A similar result is proven for $k$ identical subwords of a word over an alphabet with at most $k$ letters.

Citations (27)

Summary

We haven't generated a summary for this paper yet.