Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strengthened Hardness for Approximating Minimum Unique Game and Small Set Expansion (1204.2026v6)

Published 10 Apr 2012 in cs.CC

Abstract: In this paper, the author puts forward a variation of Feige's Hypothesis, which claims that it is hard on average refuting Unbalanced Max 3-XOR under biased assignments on a natural distribution. Under this hypothesis, the author strengthens the previous known hardness for approximating Minimum Unique Game, $5/4-\epsilon$, by proving that Min 2-Lin-2 is hard to within $3/2-\epsilon$ and strengthens the previous known hardness for approximating Small Set Expansion, $4/3-\epsilon$, by proving that Min Bisection is hard to approximate within $3-\epsilon$. In addition, the author discusses the limitation of this method to show that it can strengthen the hardness for approximating Minimum Unique Game to $2-\kappa$ where $\kappa$ is a small absolute positive, but is short of proving $\omega_k(1)$ hardness for Minimum Unique Game (or Small Set Expansion), by assuming a generalization of this hypothesis on Unbalanced Max k-CSP with Samorodnitsky-Trevisan hypergraph predicate.

Citations (3)

Summary

We haven't generated a summary for this paper yet.