2000 character limit reached
Improved theoretical guarantees regarding a class of two-row cutting planes (1204.1715v1)
Published 8 Apr 2012 in math.OC, cs.DM, and math.CO
Abstract: The corner polyhedron is described by minimal valid inequalities from maximal lattice-free convex sets. For the Relaxed Corner Polyhedron (RCP) with two free integer variables and any number of non-negative continuous variables, it is known that such facet defining inequalities arise from maximal lattice-free splits, triangles and quadrilaterals. We improve on the tightest known upper bound for the approximation of the RCP, purely by minimal valid inequalities from maximal lattice-free quadrilaterals, from 2 to 1.71. We generalize the tightest known lower bound of 1.125 for the approximation of the RCP, purely by minimal valid inequalities from maximal lattice-free triangles, to an infinite subclass of quadrilaterals.