Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Fast Computation of Gradients for CANDECOMP/PARAFAC Algorithms (1204.1586v1)

Published 7 Apr 2012 in cs.NA and math.NA

Abstract: Product between mode-$n$ unfolding $\bY_{(n)}$ of an $N$-D tensor $\tY$ and Khatri-Rao products of $(N-1)$ factor matrices $\bA{(m)}$, $m = 1,..., n-1, n+1, ..., N$ exists in algorithms for CANDECOMP/PARAFAC (CP). If $\tY$ is an error tensor of a tensor approximation, this product is the gradient of a cost function with respect to factors, and has the largest workload in most CP algorithms. In this paper, a fast method to compute this product is proposed. Experimental verification shows that the fast CP gradient can accelerate the CP_ALS algorithm 2 times and 8 times faster for factorizations of 3-D and 4-D tensors, and the speed-up ratios can be 20-30 times for higher dimensional tensors.

Citations (18)

Summary

We haven't generated a summary for this paper yet.