Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mean curvature flow of higher codimension in Riemannian manifolds (1204.0107v1)

Published 31 Mar 2012 in math.DG

Abstract: We investigate the convergence of the mean curvature flow of arbitrary codimension in Riemannian manifolds with bounded geometry. We prove that if the initial submanifold satisfies a pinching condition, then along the mean curvature flow the submanifold contracts smoothly to a round point in finite time. As a consequence we obtain a differentiable sphere theorem for submanifolds in a Riemannian manifold.

Citations (15)

Summary

We haven't generated a summary for this paper yet.