Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polylogarithmic Approximation for Generalized Minimum Manhattan Networks (1203.6481v2)

Published 29 Mar 2012 in cs.CG and cs.DS

Abstract: Given a set of $n$ terminals, which are points in $d$-dimensional Euclidean space, the minimum Manhattan network problem (MMN) asks for a minimum-length rectilinear network that connects each pair of terminals by a Manhattan path, that is, a path consisting of axis-parallel segments whose total length equals the pair's Manhattan distance. Even for $d=2$, the problem is NP-hard, but constant-factor approximations are known. For $d \ge 3$, the problem is APX-hard; it is known to admit, for any $\eps > 0$, an $O(n\eps)$-approximation. In the generalized minimum Manhattan network problem (GMMN), we are given a set $R$ of $n$ terminal pairs, and the goal is to find a minimum-length rectilinear network such that each pair in $R$ is connected by a Manhattan path. GMMN is a generalization of both MMN and the well-known rectilinear Steiner arborescence problem (RSA). So far, only special cases of GMMN have been considered. We present an $O(\log{d+1} n)$-approximation algorithm for GMMN (and, hence, MMN) in $d \ge 2$ dimensions and an $O(\log n)$-approximation algorithm for 2D. We show that an existing $O(\log n)$-approximation algorithm for RSA in 2D generalizes easily to $d>2$ dimensions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Aparna Das (4 papers)
  2. Krzysztof Fleszar (10 papers)
  3. Stephen Kobourov (84 papers)
  4. Joachim Spoerhase (30 papers)
  5. Sankar Veeramoni (3 papers)
  6. Alexander Wolff (73 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.