Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

Poisson-Dirichlet statistics for the extremes of a log-correlated Gaussian field (1203.4216v2)

Published 19 Mar 2012 in math.PR and cond-mat.dis-nn

Abstract: We study the statistics of the extremes of a discrete Gaussian field with logarithmic correlations at the level of the Gibbs measure. The model is defined on the periodic interval $[0,1]$, and its correlation structure is nonhierarchical. It is based on a model introduced by Bacry and Muzy Comm. Math. Phys. 236 (2003) 449-475, and is similar to the logarithmic Random Energy Model studied by Carpentier and Le Doussal [Phys. Rev. E (3) 63 (2001) 026110] and more recently by Fyodorov and Bouchaud [J. Phys. A 41 (2008) 372001]. At low temperature, it is shown that the normalized covariance of two points sampled from the Gibbs measure is either $0$ or $1$. This is used to prove that the joint distribution of the Gibbs weights converges in a suitable sense to that of a Poisson-Dirichlet variable. In particular, this proves a conjecture of Carpentier and Le Doussal that the statistics of the extremes of the log-correlated field behave as those of i.i.d. Gaussian variables and of branching Brownian motion at the level of the Gibbs measure. The method of proof is robust and is adaptable to other log-correlated Gaussian fields.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.