Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Accurate Arabic Root-Based Lemmatizer for Information Retrieval Purposes (1203.3584v1)

Published 15 Mar 2012 in cs.CL

Abstract: In spite of its robust syntax, semantic cohesion, and less ambiguity, lemma level analysis and generation does not yet focused in Arabic NLP literatures. In the current research, we propose the first non-statistical accurate Arabic lemmatizer algorithm that is suitable for information retrieval (IR) systems. The proposed lemmatizer makes use of different Arabic language knowledge resources to generate accurate lemma form and its relevant features that support IR purposes. As a POS tagger, the experimental results show that, the proposed algorithm achieves a maximum accuracy of 94.8%. For first seen documents, an accuracy of 89.15% is achieved, compared to 76.7% of up to date Stanford accurate Arabic model, for the same, dataset.

Citations (32)

Summary

We haven't generated a summary for this paper yet.