Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fixed-Rank Representation for Unsupervised Visual Learning (1203.2210v2)

Published 9 Mar 2012 in cs.CV and cs.NA

Abstract: Subspace clustering and feature extraction are two of the most commonly used unsupervised learning techniques in computer vision and pattern recognition. State-of-the-art techniques for subspace clustering make use of recent advances in sparsity and rank minimization. However, existing techniques are computationally expensive and may result in degenerate solutions that degrade clustering performance in the case of insufficient data sampling. To partially solve these problems, and inspired by existing work on matrix factorization, this paper proposes fixed-rank representation (FRR) as a unified framework for unsupervised visual learning. FRR is able to reveal the structure of multiple subspaces in closed-form when the data is noiseless. Furthermore, we prove that under some suitable conditions, even with insufficient observations, FRR can still reveal the true subspace memberships. To achieve robustness to outliers and noise, a sparse regularizer is introduced into the FRR framework. Beyond subspace clustering, FRR can be used for unsupervised feature extraction. As a non-trivial byproduct, a fast numerical solver is developed for FRR. Experimental results on both synthetic data and real applications validate our theoretical analysis and demonstrate the benefits of FRR for unsupervised visual learning.

Citations (159)

Summary

We haven't generated a summary for this paper yet.