Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 454 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

A Difference Version of Nori's Theorem (1203.1176v1)

Published 6 Mar 2012 in math.RA and math.AC

Abstract: We consider (Frobenius) difference equations over (F_q(s,t), phi) where phi fixes t and acts on F_q(s) as the Frobenius endomorphism. We prove that every semisimple, simply-connected linear algebraic group G defined over F_q can be realized as a difference Galois group over F_{qi}(s,t) for some i in N. The proof uses upper and lower bounds on the Galois group scheme of a Frobenius difference equation that are developed in this paper. The result can be seen as a difference analogue of Nori's Theorem which states that G(F_q) occurs as (finite) Galois group over F_q(s).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)