Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 TPS
Gemini 2.5 Pro 55 TPS Pro
GPT-5 Medium 40 TPS
GPT-5 High 40 TPS Pro
GPT-4o 94 TPS
GPT OSS 120B 477 TPS Pro
Kimi K2 231 TPS Pro
2000 character limit reached

Extension the Noether's theorem to Lagrangian formulation with nonlocality (1203.1149v1)

Published 6 Mar 2012 in math-ph and math.MP

Abstract: A Lagrangian formulation with nonlocality is investigated in this paper. The nonlocality of the Lagrangian is introduced by a new nonlocal argument that is defined as a nonlocal residual satisfying the zero mean condition. The nonlocal Euler-Lagrangian equation is derived from the Hamilton's principle. The Noether's theorem is extended to this Lagrangian formulation with nonlocality. With the help of the extended Noether's theorem, the conservation laws relevant to energy, linear momentum, angular momentum and the Eshelby tensor are determined in the nonlocal elasticity associated with the mechanically based constitutive model. The results show that the conservation laws exist only in the form of the integral over the whole domain occupied by body. The localization of the conservation laws is discussed in detail. We demonstrate that not every conservation law corresponds to a local equilibrium equation. Only when the nonlocal residual of conservation current exists, can a conservation law be transformed into a local equilibrium equation by localization.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube