Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consensus and Products of Random Stochastic Matrices: Exact Rate for Convergence in Probability (1202.6389v1)

Published 28 Feb 2012 in math.PR, cs.IT, cs.SI, and math.IT

Abstract: Distributed consensus and other linear systems with system stochastic matrices $W_k$ emerge in various settings, like opinion formation in social networks, rendezvous of robots, and distributed inference in sensor networks. The matrices $W_k$ are often random, due to, e.g., random packet dropouts in wireless sensor networks. Key in analyzing the performance of such systems is studying convergence of matrix products $W_kW_{k-1}... W_1$. In this paper, we find the exact exponential rate $I$ for the convergence in probability of the product of such matrices when time $k$ grows large, under the assumption that the $W_k$'s are symmetric and independent identically distributed in time. Further, for commonly used random models like with gossip and link failure, we show that the rate $I$ is found by solving a min-cut problem and, hence, easily computable. Finally, we apply our results to optimally allocate the sensors' transmission power in consensus+innovations distributed detection.

Citations (28)

Summary

We haven't generated a summary for this paper yet.