Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 191 tok/s Pro
2000 character limit reached

The universal thickening of the field of real numbers (1202.4377v2)

Published 20 Feb 2012 in math.NT and math.AG

Abstract: We define the universal thickening of the field of real numbers. This construction is performed in three steps which parallel the universal perfection, the Witt construction and a completion process. We show that the transposition of the perfection process at the real archimedean place is identical to the "dequantization" process and yields Viro's tropical real hyperfield. Then we prove that the archimedean Witt construction in the context of hyperfields allows one to recover a field from a hyperfield, and we obtain the universal pro-infinitesimal thickening of the field of real numbers. We provide the real analogues of several algebras used in the construction of the rings of p-adic periods. We supply the canonical decomposition of elements in terms of Teichmuller lifts, we make the link with the Mikusinski field of operational calculus and compute the Gelfand spectrum of the archimedean counterparts of the rings of p-adic periods. In the second part of the paper we discuss the complex case and its relation with the theory of oscillatory integrals in quantum physics.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube