Papers
Topics
Authors
Recent
2000 character limit reached

Deformed su(1,1) Algebra as a Model for Quantum Oscillators

Published 16 Feb 2012 in math-ph, math.MP, math.RT, and quant-ph | (1202.3541v2)

Abstract: The Lie algebra $\mathfrak{su}(1,1)$ can be deformed by a reflection operator, in such a way that the positive discrete series representations of $\mathfrak{su}(1,1)$ can be extended to representations of this deformed algebra $\mathfrak{su}(1,1)\gamma$. Just as the positive discrete series representations of $\mathfrak{su}(1,1)$ can be used to model a quantum oscillator with Meixner-Pollaczek polynomials as wave functions, the corresponding representations of $\mathfrak{su}(1,1)\gamma$ can be utilized to construct models of a quantum oscillator. In this case, the wave functions are expressed in terms of continuous dual Hahn polynomials. We study some properties of these wave functions, and illustrate some features in plots. We also discuss some interesting limits and special cases of the obtained oscillator models.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.