Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounding the number of points on a curve using a generalization of Weierstrass semigroups (1202.0453v1)

Published 2 Feb 2012 in math.AG, cs.IT, and math.IT

Abstract: In this article we use techniques from coding theory to derive upper bounds for the number of rational places of the function field of an algebraic curve defined over a finite field. The used techniques yield upper bounds if the (generalized) Weierstrass semigroup [P. Beelen, N. Tuta\c{s}: A generalization of the Weierstrass semigroup, J. Pure Appl. Algebra, 207(2), 2006] for an $n$-tuple of places is known, even if the exact defining equation of the curve is not known. As shown in examples, this sometimes enables one to get an upper bound for the number of rational places for families of function fields. Our results extend results in [O. Geil, R. Matsumoto: Bounding the number of $\mathbb{F}_q$-rational places in algebraic function fields using Weierstrass semigroups. Pure Appl. Algebra, 213(6), 2009].

Citations (11)

Summary

We haven't generated a summary for this paper yet.