Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extremal sequences of polynomial complexity (1201.6236v3)

Published 30 Jan 2012 in math.OC, cs.DM, math.DS, and math.OA

Abstract: The joint spectral radius of a bounded set of $d \times d$ real matrices is defined to be the maximum possible exponential growth rate of products of matrices drawn from that set. For a fixed set of matrices, a sequence of matrices drawn from that set is called \emph{extremal} if the associated sequence of partial products achieves this maximal rate of growth. An influential conjecture of J. Lagarias and Y. Wang asked whether every finite set of matrices admits an extremal sequence which is periodic. This is equivalent to the assertion that every finite set of matrices admits an extremal sequence with bounded subword complexity. Counterexamples were subsequently constructed which have the property that every extremal sequence has at least linear subword complexity. In this paper we extend this result to show that for each integer $p \geq 1$, there exists a pair of square matrices of dimension $2p(2{p+1}-1)$ for which every extremal sequence has subword complexity at least $2{-p2}np$.

Citations (9)

Summary

We haven't generated a summary for this paper yet.