Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Opposite power series (1201.5713v1)

Published 27 Jan 2012 in math.CA and math.GR

Abstract: Let $\gamma_n$ ($n\in \mathbb{Z}{\ge0}$) be a sequence of complex numbers, which is tame: $0<\exists u\le \gamma{n-1}/\gamma_n \le \exists v<\infty$ for all $n>0$. We show a resonance between the singularities of the function of the power series $P(t):=\sum_{n=0}\infty \gamma_n tn$ on its boundary of the disc of convergence and the oscillation behavior of the sequences $\gamma_{n-k}/\gamma_n$ ($n\in \mathbb{Z}{>>0}$) for $k>0$. The resonance is proven by introducing the space of opposite power series, which is the compact subspace of the space of all formal power series in the opposite variable $s=1/t$ and is defined as the accumulating set of the sequence $X_n(s):=\sum{k=0}n\frac{\gamma_{n-k}}{\gamma_n}tk$ ($n\in \mathbb{Z}_{\ge0}$). We analyze in details an example of the growth series $P(t)$ for the modular group $PSL(2,Z)$ due to Machi.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube