Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combinatorial Modelling and Learning with Prediction Markets (1201.3851v1)

Published 18 Jan 2012 in cs.AI, cs.GT, and q-fin.TR

Abstract: Combining models in appropriate ways to achieve high performance is commonly seen in machine learning fields today. Although a large amount of combinatorial models have been created, little attention is drawn to the commons in different models and their connections. A general modelling technique is thus worth studying to understand model combination deeply and shed light on creating new models. Prediction markets show a promise of becoming such a generic, flexible combinatorial model. By reviewing on several popular combinatorial models and prediction market models, this paper aims to show how the market models can generalise different combinatorial stuctures and how they implement these popular combinatorial models in specific conditions. Besides, we will see among different market models, Storkey's \emph{Machine Learning Markets} provide more fundamental, generic modelling mechanisms than the others, and it has a significant appeal for both theoretical study and application.

Citations (1)

Summary

We haven't generated a summary for this paper yet.