Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Zarankiewicz Problem and Depth-Two Superconcentrators (1201.1377v2)

Published 6 Jan 2012 in cs.DM

Abstract: We show tight necessary and sufficient conditions on the sizes of small bipartite graphs whose union is a larger bipartite graph that has no large bipartite independent set. Our main result is a common generalization of two classical results in graph theory: the theorem of K\H{o}v\'{a}ri, S\'{o}s and Tur\'{a}n on the minimum number of edges in a bipartite graph that has no large independent set, and the theorem of Hansel (also Katona and Szemer\'{e}di, Krichevskii) on the sum of the sizes of bipartite graphs that can be used to construct a graph (non-necessarily bipartite) that has no large independent set. As an application of our results, we show how they unify the underlying combinatorial principles developed in the proof of tight lower bounds for depth-two superconcentrators.

Summary

We haven't generated a summary for this paper yet.