Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An inverse theorem: when the measure of the sumset is the sum of the measures in a locally compact abelian group (1112.6403v3)

Published 29 Dec 2011 in math.CO

Abstract: We classify the pairs of subsets (A,B) of a locally compact abelian group satisfying m(A+B)=m(A)+m(B), where m is Haar measure. This generalizes a result of M. Kneser classifying such pairs under the additional assumption that G is compact and connected. Our proof combines Kneser's proof with arguments of D. Grynkiewicz, who classified the pairs of subsets (A,B) of abelian groups satisfying |A+B|=|A|+|B|, where |A| is the cardinality of A.

Summary

We haven't generated a summary for this paper yet.