Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing Continuous Time Random Walks on Time Varying Graphs (1112.5762v5)

Published 25 Dec 2011 in cs.SI and physics.soc-ph

Abstract: In this paper we study the behavior of a continuous time random walk (CTRW) on a stationary and ergodic time varying dynamic graph. We establish conditions under which the CTRW is a stationary and ergodic process. In general, the stationary distribution of the walker depends on the walker rate and is difficult to characterize. However, we characterize the stationary distribution in the following cases: i) the walker rate is significantly larger or smaller than the rate in which the graph changes (time-scale separation), ii) the walker rate is proportional to the degree of the node that it resides on (coupled dynamics), and iii) the degrees of node belonging to the same connected component are identical (structural constraints). We provide examples that illustrate our theoretical findings.

Citations (31)

Summary

We haven't generated a summary for this paper yet.