Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

One dimensional Markov random fields, Markov chains and Topological Markov fields (1112.4240v1)

Published 19 Dec 2011 in math.DS and math.PR

Abstract: In this paper we show that any one-dimensional stationary, finite-valued Markov Random Field (MRF) is a Markov chain, without any mixing condition or condition on the support. Our proof makes use of two properties of the support $X$ of a finite-valued stationary MRF: 1) $X$ is non-wandering (this is a property of the support of any finite-valued stationary process) and 2) $X$ is a topological Markov field (TMF). The latter is a new property that sits in between the classes of shifts of finite type and sofic shifts, which are well-known objects of study in symbolic dynamics. Here, we develop the TMF property in one dimension, and we will develop this property in higher dimensions in a future paper. While we are mainly interested in discrete-time finite-valued stationary MRF's, we also consider continuous-time, finite-valued stationary MRF's, and show that these are (continuous-time) Markov chains as well.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.