Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

The Geometry of Hamiltonian Monte Carlo (1112.4118v1)

Published 18 Dec 2011 in stat.ME and physics.data-an

Abstract: With its systematic exploration of probability distributions, Hamiltonian Monte Carlo is a potent Markov Chain Monte Carlo technique; it is an approach, however, ultimately contingent on the choice of a suitable Hamiltonian function. By examining both the symplectic geometry underlying Hamiltonian dynamics and the requirements of Markov Chain Monte Carlo, we construct the general form of admissible Hamiltonians and propose a particular choice with potential application in Bayesian inference.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.