Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nilpotent coadjoint orbits in small characteristic (1112.2399v3)

Published 11 Dec 2011 in math.RT

Abstract: We show that the numbers of nilpotent coadjoint orbits in the dual of exceptional Lie algebra $G_2$ in characteristic $3$ and in the dual of exceptional Lie algebra $F_4$ in characteristic $2$ are finite. We determine the closure relation among nilpotent coadjoint orbits in the dual of Lie algebras of type $B,C,F_4$ in characteristic $2$ and in the dual of Lie algebra of type $G_2$ in characteristic $3$. In each case we give an explicit description of the nilpotent pieces in the dual defined in \cite{CP}, which are in general unions of nilpotent coadjoint orbits, coincide with the earlier case-by-case definition in \cite{L4,X4} in the case of classical groups and have nice properties independent of the characteristic of the base field. This completes the classification of nilpotent coadjoint orbits in the dual of Lie algebras of reductive algebraic groups and the determination of closure relation among such orbits in all characteristic.

Citations (8)

Summary

We haven't generated a summary for this paper yet.