Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

On Problems as Hard as CNFSAT (1112.2275v3)

Published 10 Dec 2011 in cs.DS, cs.CC, and cs.DM

Abstract: The field of exact exponential time algorithms for NP-hard problems has thrived over the last decade. While exhaustive search remains asymptotically the fastest known algorithm for some basic problems, difficult and non-trivial exponential time algorithms have been found for a myriad of problems, including Graph Coloring, Hamiltonian Path, Dominating Set and 3-CNF-Sat. In some instances, improving these algorithms further seems to be out of reach. The CNF-Sat problem is the canonical example of a problem for which the trivial exhaustive search algorithm runs in time O(2n), where n is the number of variables in the input formula. While there exist non-trivial algorithms for CNF-Sat that run in time o(2n), no algorithm was able to improve the growth rate 2 to a smaller constant, and hence it is natural to conjecture that 2 is the optimal growth rate. The strong exponential time hypothesis (SETH) by Impagliazzo and Paturi [JCSS 2001] goes a little bit further and asserts that, for every epsilon<1, there is a (large) integer k such that that k-CNF-Sat cannot be computed in time 2{epsilon n}. In this paper, we show that, for every epsilon < 1, the problems Hitting Set, Set Splitting, and NAE-Sat cannot be computed in time O(2{epsilon n}) unless SETH fails. Here n is the number of elements or variables in the input. For these problems, we actually get an equivalence to SETH in a certain sense. We conjecture that SETH implies a similar statement for Set Cover, and prove that, under this assumption, the fastest known algorithms for Steinter Tree, Connected Vertex Cover, Set Partitioning, and the pseudo-polynomial time algorithm for Subset Sum cannot be significantly improved. Finally, we justify our assumption about the hardness of Set Cover by showing that the parity of the number of set covers cannot be computed in time O(2{epsilon n}) for any epsilon<1 unless SETH fails.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.