Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniqueness Analysis of Non-Unitary Matrix Joint Diagonalization (1111.7088v3)

Published 30 Nov 2011 in cs.IT and math.IT

Abstract: Matrix Joint Diagonalization (MJD) is a powerful approach for solving the Blind Source Separation (BSS) problem. It relies on the construction of matrices which are diagonalized by the unknown demixing matrix. Their joint diagonalizer serves as a correct estimate of this demixing matrix only if it is uniquely determined. Thus, a critical question is under what conditions a joint diagonalizer is unique. In the present work we fully answer this question about the identifiability of MJD based BSS approaches and provide a general result on uniqueness conditions of matrix joint diagonalization. It unifies all existing results which exploit the concepts of non-circularity, non-stationarity, non-whiteness, and non-Gaussianity. As a corollary, we propose a solution for complex BSS, which can be formulated in a closed form in terms of an eigenvalue and a singular value decomposition of two matrices.

Citations (18)

Summary

We haven't generated a summary for this paper yet.