Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sarkozy's Theorem for P-Intersective Polynomials (1111.6559v5)

Published 28 Nov 2011 in math.CA, math.CO, and math.NT

Abstract: We define a necessary and sufficient condition on a polynomial $h\in \mathbb{Z}[x]$ to guarantee that every set of natural numbers of positive upper density contains a nonzero difference of the form $h(p)$ for some prime $p$. Moreover, we establish a quantitative estimate on the size of the largest subset of ${1,2,\dots,N}$ which lacks the desired arithmetic structure, showing that if deg$(h)=k$, then the density of such a set is at most a constant times $(\log N){-c}$ for any $c<1/(2k-2)$. We also discuss how an improved version of this result for $k=2$ and a relative version in the primes can be obtained with some additional known methods.

Summary

We haven't generated a summary for this paper yet.