2000 character limit reached
Discrete components in restriction of unitary representations of rank one semisimple Lie groups (1111.6406v3)
Published 28 Nov 2011 in math.RT
Abstract: We consider spherical principal series representations of the semisimple Lie group of rank one $G=SO(n, 1; \mathbb K)$, $\mathbb K=\br, \bc, \bh$. There is a family of unitarizable representations $\pi_{\nu}$ of $G$ for $\nu$ in an interval on $\mathbb R+$, the so-called complementary series, and subquotient or subrepresentations of $G$ for $\nu$ being negative integers. We consider the restriction of $(\pi_{\nu}, G)$ under the subgroup $H=SO(n-1, 1; \mathbb K)$. We prove the appearing of discrete components. The corresponding results for the exceptional Lie group $F_{4(-20)}$ and its subgroup $Spin(8,1)$ are also obtained.