Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Are There Enough Injective Sets? (1111.5180v1)

Published 22 Nov 2011 in math.LO

Abstract: The axiom of choice ensures precisely that, in ZFC, every set is projective: that is, a projective object in the category of sets. In constructive ZF (CZF) the existence of enough projective sets has been discussed as an additional axiom taken from the interpretation of CZF in Martin-Loef's intuitionistic type theory. On the other hand, every non-empty set is injective in classical ZF, which argument fails to work in CZF. The aim of this paper is to shed some light on the problem whether there are (enough) injective sets in CZF. We show that no two element set is injective unless the law of excluded middle is admitted for negated formulas, and that the axiom of power set is required for proving that there are strongly enough injective sets. The latter notion is abstracted from the singleton embedding into the power set, which ensures enough injectives both in every topos and in IZF. We further show that it is consistent with CZF to assume that the only injective sets are the singletons. In particular, assuming the consistency of CZF one cannot prove in CZF that there are enough injective sets. As a complement we revisit the duality between injective and projective sets from the point of view of intuitionistic type theory.

Summary

We haven't generated a summary for this paper yet.