Papers
Topics
Authors
Recent
2000 character limit reached

Dimension reduction by random hyperplane tessellations

Published 18 Nov 2011 in math.PR and math.FA | (1111.4452v2)

Abstract: Given a subset K of the unit Euclidean sphere, we estimate the minimal number m = m(K) of hyperplanes that generate a uniform tessellation of K, in the sense that the fraction of the hyperplanes separating any pair x, y in K is nearly proportional to the Euclidean distance between x and y. Random hyperplanes prove to be almost ideal for this problem; they achieve the almost optimal bound m = O(w(K)2) where w(K) is the Gaussian mean width of K. Using the map that sends x in K to the sign vector with respect to the hyperplanes, we conclude that every bounded subset K of Rn embeds into the Hamming cube {-1, 1}m with a small distortion in the Gromov-Haussdorf metric. Since for many sets K one has m = m(K) << n, this yields a new discrete mechanism of dimension reduction for sets in Euclidean spaces.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.