Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The influence of the network topology on epidemic spreading (1111.3176v1)

Published 14 Nov 2011 in physics.soc-ph, cond-mat.stat-mech, and cs.SI

Abstract: The influence of the network's structure on the dynamics of spreading processes has been extensively studied in the last decade. Important results that partially answer this question show a weak connection between the macroscopic behavior of these processes and specific structural properties in the network, such as the largest eigenvalue of a topology related matrix. However, little is known about the direct influence of the network topology on microscopic level, such as the influence of the (neighboring) network on the probability of a particular node's infection. To answer this question, we derive both an upper and a lower bound for the probability that a particular node is infective in a susceptible-infective-susceptible model for two cases of spreading processes: reactive and contact processes. The bounds are derived by considering the $n-$hop neighborhood of the node; the bounds are tighter as one uses a larger $n-$hop neighborhood to calculate them. Consequently, using local information for different neighborhood sizes, we assess the extent to which the topology influences the spreading process, thus providing also a strong macroscopic connection between the former and the latter. Our findings are complemented by numerical results for a real-world e-mail network. A very good estimate for the infection density $\rho$ is obtained using only 2-hop neighborhoods which account for 0.4% of the entire network topology on average.

Citations (20)

Summary

We haven't generated a summary for this paper yet.