Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equational theories of profinite structures (1111.0476v1)

Published 2 Nov 2011 in cs.FL

Abstract: In this paper we consider a general way of constructing profinite struc- tures based on a given framework - a countable family of objects and a countable family of recognisers (e.g. formulas). The main theorem states: A subset of a family of recognisable sets is a lattice if and only if it is definable by a family of profinite equations. This result extends Theorem 5.2 from [GGEP08] expressed only for finite words and morphisms to finite monoids. One of the applications of our theorem is the situation where objects are finite relational structures and recognisers are first order sentences. In that setting a simple characterisation of lattices of first order formulas arise.

Citations (1)

Summary

We haven't generated a summary for this paper yet.