Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

An Explicit Presentation of the Grothendieck Ring of Finitely Generated F_{q}[SL(2,F_{q})]-Modules (1110.6881v1)

Published 31 Oct 2011 in math.RT

Abstract: Let p be a prime and q=pg. We show that the Grothendieck ring of finitely generated F_{q}[SL(2,F_{q})]-modules is naturally isomorphic to the quotient of the polynomial algebra Z[x] by the ideal generated by fg-x, where f(x)=sum_{j=0}{floor(p/2)}(-1){j}(p/(p-j))((p-j); j)x{p-2j}, and the superscript [g] denotes g-fold composition of polynomials. We conjecture that a similar result holds for simply connected semisimple algebraic groups defined and split over a finite field.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)