Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reverse mathematics of compact countable second-countable spaces (1110.6555v1)

Published 29 Oct 2011 in math.LO

Abstract: We study the reverse mathematics of the theory of countable second-countable topological spaces, with a focus on compactness. We show that the general theory of such spaces works as expected in the subsystem $\mathsf{ACA}_0$ of second-order arithmetic, but we find that many unexpected pathologies can occur in weaker subsystems. In particular, we show that $\mathsf{RCA}_0$ does not prove that every compact discrete countable second-countable space is finite and that $\mathsf{RCA}_0$ does not prove that the product of two compact countable second-countable spaces is compact. To circumvent these pathologies, we introduce strengthened forms of compactness, discreteness, and Hausdorffness which are better behaved in subsystems of second-order arithmetic weaker than $\mathsf{ACA}_0$.

Summary

We haven't generated a summary for this paper yet.