Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Counterexample to the Generalized Linial-Nisan Conjecture (1110.6126v1)

Published 27 Oct 2011 in cs.CC

Abstract: In earlier work, we gave an oracle separating the relational versions of BQP and the polynomial hierarchy, and showed that an oracle separating the decision versions would follow from what we called the Generalized Linial-Nisan (GLN) Conjecture: that "almost k-wise independent" distributions are indistinguishable from the uniform distribution by constant-depth circuits. The original Linial-Nisan Conjecture was recently proved by Braverman; we offered a $200 prize for the generalized version. In this paper, we save ourselves $200 by showing that the GLN Conjecture is false, at least for circuits of depth 3 and higher. As a byproduct, our counterexample also implies that Pi2P is not contained in PNP relative to a random oracle with probability 1. It has been conjectured since the 1980s that PH is infinite relative to a random oracle, but the highest levels of PH previously proved separate were NP and coNP. Finally, our counterexample implies that the famous results of Linial, Mansour, and Nisan, on the structure of AC0 functions, cannot be improved in several interesting respects.

Citations (16)

Summary

We haven't generated a summary for this paper yet.