Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Duality, Cohomology, and Geometry of Locally Compact Quantum Groups (1110.4933v1)

Published 22 Oct 2011 in math.FA

Abstract: In this paper we study various convolution-type algebras associated with a locally compact quantum group from cohomological and geometrical points of view. The quantum group duality endows the space of trace class operators over a locally compact quantum group with two products which are operator versions of convolution and pointwise multiplication, respectively; we investigate the relation between these two products, and derive a formula linking them. Furthermore, we define some canonical module structures on these convolution algebras, and prove that certain topological properties of a quantum group, can be completely characterized in terms of cohomological properties of these modules. We also prove a quantum group version of a theorem of Hulanicki characterizing group amenability. Finally, we study the Radon--Nikodym property of the $L1$-algebra of locally compact quantum groups. In particular, we obtain a criterion that distinguishes discreteness from the Radon--Nikodym property in this setting.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.