Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuous cofinal maps on ultrafilters (1110.4154v1)

Published 19 Oct 2011 in math.LO and math.GN

Abstract: An ultrafilter $\mathcal{U}$ on a countable base {\em has continuous Tukey reductions} if whenever an ultrafilter $\mathcal{V}$ is Tukey reducible to $\mathcal{U}$, then every monotone cofinal map $f:\mathcal{U}\ra\mathcal{V}$ is continuous when restricted to some cofinal subset of $\mathcal{U}$. In the first part of the paper, we give mild conditions under which the property of having continuous Tukey reductions is inherited under Tukey reducibility. In particular, if $\mathcal{U}$ is Tukey reducible to a p-point then $\mathcal{U}$ has continuous Tukey reductions. In the second part, we show that any countable iteration of Fubini products of p-points has Tukey reductions which are continuous with respect to its topological Ramsey space of $\vec{\mathcal{U}}$-trees.

Summary

We haven't generated a summary for this paper yet.